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TABLE II. Corrections to the one-phonon "hopping" probability 
and lattice relaxation energy for w-type Ge and Si. 

(Wbaliot/ 
Mater ia l ar_>o AT-+O Wba

l)T-+o £ L R (eV) 

n-Ge 0.059(0.08) 0.067(0.08) 0.82(0.78) 2.5 X10~H3.3 X10"&) 
w-Si 0.43(0.56) 0.39(0.59) 0.24(0.10) 0.80X10-3(1.1X10-3) 

difference of the electrostatic energy of the carrier in 
the two donors, v the velocity of sound in the crystal, 
and d the density of the crystal. 

In the Table I I we give the values of ar-*o, AT->o 
and {Wha

not/Wha
l)T->o obtained from (28)-(30) and 

from data given in Table I for ^-type Ge and Si samples 
studied in Ref. 2. We give also the values of relaxation 

INTRODUCTION 

IN this paper1 we are concerned with the determina­
tion of the conductivity effective mass, which is un­

derstood to be the effective mass entering in the free-
carrier mobility 

fjL=(e/mc){r)J (1) 

where e is the electronic charge, mc is the conductivity 
effective mass, and (r) is the relaxation time averaged 
over all of the free current carriers. The determination 
of this parameter has received increasing attention in 
recent years. The earliest and the most extensive in­
vestigations to date have utilized cyclotron resonance 

* Presently with Energy Conversion, Inc., Cambridge, 
Massachusetts. 

1 This paper is based upon a dissertation by the author sub­
mitted in partial fulfillment of the degree of Doctor of Science to 
the Electrical Engineering Department of the Massachusetts 
Institute of Technology and published as Scientific Report No. 7 
under Contract No. AF 19(604)-4153 (Jan. 1962). Air Force 
Cambridge Research Laboratory document number AFCRL-
62-129. 

energy E L R of the lattice deformed by interaction with 
the donor electron, which is2 

Ex2 r 
E L R = / U{T)THT. (31) 

In Table I I we give in brackets for comparison the 
values obtained previously2 in approximation of hy­
drogen-like, spherical donor. 
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techniques. For example, the conductivity effective 
mass has been measured at liquid-helium temperature, 
where the relaxation time of free carriers is sufficiently 
long for both germanium and silicon.2'3 Recently in­
frared techniques also have been employed for this de­
termination. In one instance, the conductivity effective 
masses in germanium, silicon, and indium antimonide 
were obtained from a combination of reflection and 
transmission measurements conducted at room tempera­
ture.4 In another instance only reflection measurements 
were required, in conjunction with varying intensities 
of magnetic field, to determine the conductivity effective 
masses of mercury selenide and indium antimonide.5 

We are proposing in this paper that it is possible to 
determine mc very accurately simply from a measure-

2 G. Dresselhaus, A. Kip, and C. Kittel, Phys. Rev. 98, 368 
(1955). 

3 R. Dexter, H. Zeiger, and B. Lax, Phys. Rev. 104, 637 (1956). 
4 W. Spitzer and H. Fan, Phys. Rev. 106, 882 (1957). 
5 B. Lax and G. Wright, Phys. Rev. Letters 4, 16 (1960). 
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There exist various approximate relationships between the conductivity effective mass of free carriers mc 

and the angular frequency coo of the reflectivity minimum in the infrared arising from the free-carrier dis­
persion. A detailed analysis of the reflectivity equation shows that it is possible to obtain a relationship 
between mc and coo when in addition one has a knowledge of the free-carrier concentration, the drift mobility, 
and the dielectric constant of the semiconductor at very high frequencies. This relationship is shown to 
yield a value of mc*~ 0.145 for n-type germanium at room temperature using data presented in the literature. 
This value compares well with the value of mc* = 0.15 obtained using a combination of reflection and trans­
mission measurements. The experimental work required to obtain accurate values for mc using this relation­
ship is considerably less than that required by other techniques, such as cyclotron resonance, magnetoplasma, 
and combined infrared reflection and transmission measurements, which are presently used. Moreover, 
this procedure can be applied over very broad ranges of temperature and of free-carrier concentration. 
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ment of the frequency of the reflectivity minimum in the 
far infrared. Through a straightforward differentiation 
of the reflectivity equation, utilizing the dispersion rela­
tions, and the evaluation of this derivative at the mini­
mum, a relationship is obtained which can be solved for 
mc using an iterative procedure. 

FREE-CARRIER DISPERSION 

In the far infrared, at wavelengths longer than that 
of the intrinsic absorption edge, electromagnetic radia­
tion interacts with the free carriers of the material and 
undergoes dispersion. The theory of this free-carrier dis­
persion is developed in detail in a recent book by Moss.6 

He has shown that both classical and quantum mechani­
cal analyses lead to the following relations for the real 
refractive index n and the absorption index (extinction 
coefficient) k of free carriers of one type only (i.e., holes 
or electrons): 

Ne2 r2 

n2-k2-e„ = (2) 
meo 1+CO2T2 

and 

Ne2 r 
2nku= , (3) 

meo l+co2r2 

where €«> is the relative dielectric constant of the medium 
in the absence of any contribution from free carriers at 
very high frequencies, N is the free-carrier concentra­
tion, €o is the permittivity of free space, m is the effec­
tive mass of the free carriers, and co is the angular fre­
quency of the infrared radiation. 

Several points should be noted with regard to Eqs. 
(2) and (3). I t has been shown for the energy-band 
model in which ellipsoidal surfaces of constant energy 
lie along rotation axes of the cubic point group, that the 
effective mass which enters in these expressions is the 
conductivity effective mass, mc? In this case, mc is de­
fined by the relation l/tne=%(l/nii+2/tni), where mi is 
the value of the effective-mass tensor associated with 
the longitudinal axis of the ellipsoidal energy surface 
and mt is that associated with each of the two trans­
verse axes of the surface. Secondly, we note that the 
relaxation time r is assumed to be independent of fre­
quency and that the total frequency dependence is ex­
hibited explicitly by the quantity co. This assumption is 
not restrictive since the relaxation time is determined by 
the temperature of the crystal, its energy-band struc­
ture, and the density of imperfections in the lattice. 
Finally, it should be noted that the relaxation time r 
is necessarily assumed to be energy-independent. This 
follows from the fact that the terms containing r have 
not been averaged, ( ), with respect to the distribution 
function. This last assumption requires additional con-

6 T . Moss, Optical Properties of Semiconductors—a Semicon­
ductor Monograph (Butterworths Scientific Publications, London, 
1959), Chap. 2, p. 29. 

7 Reference 6, p. 31. 

sideration. For example, we wish to establish the con­
ditions under which r may be replaced by (r) in Eqs. 
(2) and (3). The details of the analysis for establishing 
these conditions are presented in Appendix A. How­
ever, in summary if the relaxation time is assumed to be 
proportional to a power of the free-carrier kinetic 
energy T=TQES, it is possible to compare the exact 
terms (r2/(l+co2r2)) and (r/(l+co2r2)) with the more 
convenient substitute terms (r)2/(l+co2(r)2) and ( r ) / 
(l+co2(r)2). Such a comparison shows that the latter 
terms can be substituted for the former under the follow­
ing conditions with no introduction of error: 

(i) when r is independent of energy, s=Q, as in the 
case of neutral impurity scattering, 

(ii) when there is total degeneracy and the kinetic 
energy of all carriers may be considered to be the 
Fermi energy Ef. 

The substitution can be effected under the following 
conditions with an introduction of error < 1 3 % : 

(iii) when s= — \, as in the case of scattering arising 
from acoustical modes and from dislocations, for all 
degrees of degeneracy where cor^ 1 while the degree of 
degeneracy required increases from 77^ —4 to rj=0 as 
cor decreases below unity, 

(iv) when s = %, as in the case of optical-mode scat­
tering above the Debye temperature, for all degrees of 
degeneracy and for all values of cor, and 

(v) when s = f, as in the case of scattering by ionized 
impurities, only under the condition of total degeneracy. 
These conditions are not considered to be overly restric­
tive but, in fact, to be rather generally satisfied. This 
consideration follows particularly in view of the fact 
that in order to observe the free-carrier reflectivity 
minimum at convenient wavelengths ( = 3 0 ju), it is 
often necessary to utilize free-carrier concentrations 
which result in at least partial, if not total, degeneracy. 
For these reasons, in our further consideration of Eqs. 
(2) and (3), we will assume that one of the conditions 
(i)-(v) is fulfilled and that r may be replaced by (r) 
with an introduction of error < 1 3 % . 

At this point, it must be recognized that the total 
dispersion of incident radiation in the far infrared arises 
from interactions with the free carriers and with the 
lattice as well. This latter dispersion is important in 
polar crystals. The complete dispersion relations, which 
include the contributions of both the free carriers and 
the lattice of a polar crystal AB, may be expressed as 
follows8'9: 

Ne2 co2(r)2 

mce<*>2 (l+co2(r)2) 

r e 0 0 + 2 n 2 ^ Q 2 r (co,2-co2)rz2 n 

L 3 J MeoLco2+(co,2-co2)2rz
2J 

8 Reference 6, Chaps. 2 and 16. 
9 B . Szigeti, Trans. Faraday Soc. 45, 155 (1949). 
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and 

Ne2 co(r) 
2nk = 

mce,o>2 (l+co2<r)2) 

re 0 0+2n 2 iVze 2 r cor* n 

L 3 J MeXo?+W-o?YTi2\' 

In both Eqs. (4) and (5) the last term is the contribu­
tion made by the ions of the crystal. The parameters in 
the other terms have been defined following Eqs. (2) 
and (3). The new parameters are as follows: Ni is the 
concentration of atom pairs A B; Q is an effective charge 
defined by Q=SZe, where e is the electronic charge, 
Z is the valence of the compound, and S is a measure of 
the extent to which the ions of charge Ze are capable of 
being polarized; M is the reduced atomic mass 1/M 
= 1/MA+1/MB'} ut is the angular frequency of the 
transverse lattice vibrations (Restrahlen); and n is a 
relaxation time related to the damping of the lattice 
vibrations. 

The relative contribution of the lattice to the total 
dispersion varies from one semiconductor to another. 
Moreover, it even varies for a single semiconductor de­
pending upon the free-carrier concentration. Conse­
quently, this contribution must be evaluated for each 
individual case in order to determine if its effect is 
significant in the over-all dispersion. I t is clear, however, 
that in several instances the lattice polarization may be 
neglected when analyzing the dispersion in the far in­
frared. For example, lattice polarization does not enter 
in connection with the elemental semiconductors, ger­
manium and silicon. Moreover, a combination of several 
conditions, such as, a small value for €«,, a large re­
duced mass My a slight polarizability (5<3CL), and a 
large free-carrier concentration (A>101 8 carriers/cm3), 
can serve to make the effect of the lattice polarization 
completely negligible. 

Because various combinations of these conditions are 
quite often satisfied, the total dispersion in the far in­
frared can oftentimes be considered to be described by 
the simpler Eqs. (2) and (3). In the subsequent analysis 
we will make this assumption, namely, that the lattice 
contribution to the total dispersion is negligible in the 
frequency range of the reflectivity minimum arising 
from free-carrier absorption. 

REFLECTIVITY MINIMUM 

The reflectivity of a material for normally incident 
radiation upon the surface of an infinitely thick sample 
is given by10 

R=Z(n-l)*+k*yt(n+l)*+k*l, (6) 

where n and k are described by Eqs. (2) and (3). This 
equation has been differentiated with respect to the 
variable Q after rewriting the dispersion relations in the 

10 Reference 6, p. 6. 

form: 
n*-k*=e„-B/(l+Q*) (7) 

and 
nk=B/2tt(l+Q2), (8) 

where 
B = Ne2(r)2/mce0 and i2=co(r) 

and assuming that (r) is not a function of frequency. 
The condition of zero slope at the reflectivity mini­
mum then yields an equation for the effective mass in 
terms of the frequency of the reflectivity minimum and 
other measurable parameters. The equation that re­
sults is the following: 

3 e o o - l ( l / 0 2 ) + 5 + 8 0 2 3 6 ^ - 2 
m * 3 Qm * 2_| 

46^-1) (1+302) C 2ecc(e00-l)
2 

(1+202) C3 

X C V + = 0, (9) 
(1+3S22) 4eM(e0 0-l)2(l+3ft2) 

where w c*=w c /w 0 , m0 is the free-electron mass, 
C=AV/wo€ocoo2, 12=CO0(T), and o>o is the angular fre­
quency of the reflectivity minimum. [The derivation of 
this equation is outlined in Appendix B. I t is based en­
tirely on Eqs. (6)-(8), and therefore depends on their 
applicability to a particular material system for its 
own validity.] 

This equation is quite general in that no approxima­
tions are made with respect to the magnitude of 0 nor 
with respect to the magnitude of e^. [However, it is 
true that 12 must staisfy the conditions under which the 
substitution of (r) into Eqs. (2) and (3) was effected.] 

We conclude that there are very broad conditions for 
which Eq. (9) represents an exact relationship, or very 
nearly so, between the conductivity effective mass and 
the frequency of minimum reflectivity and other meas­
urable parameters. Equation (9) can therefore be used 
for the determination of mc. This can be illustrated by 
considering the reflection curve for n-type germanium 
reported by Spitzer and Fan (S-F) and which is re­
produced here as Fig. 1. The sample investigated by S-F 
had a carrier concentration of 3.9X1018 electrons/cm3, 
/XA = 5 2 0 cm2/V-sec,n eoo=16 and a reflectivity mini­
mum at \ o~23 p. By making an initial estimate for the 
conductivity effective mass, say wc* = 0.12 as deter­
mined by cyclotron resonance, one can obtain an initial 
estimate for 0. Using this value of 0 and the values for 
A, eoo, and o?o listed above, Eq. (9) can be solved for 
mc*. This enables one to calculate a revised estimate 
for Q, and the procedure is repeated until the solu­
tion of Eq. (9) yields the same value for ni* as 

11 It is recognized that we are here employing a Hall mobility 
when actually the drift mobility is called for. However, according 
to the S-F report, the Hall coefficient was measured at 77°K 
where the Fermi level is —4.5 kT above the conduction band edge 
for this free-carrier concentration. It is reasonable to conclude 
that the mobility deduced from Ra is very nearly the drift 
mobility. 

file:///o~23
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before. In actual fact, because 02 is large with re­
spect to unity (02=13) and therefore Eq. (9) is al­
most independent of Q, this procedure converges very 
quickly. The value obtained for the conductivity effec­
tive mass using this procedure for the above example is 
wc*=0.145. This compares very well with the value 
mc*=0.15 calculated by S-F using their data from both 
reflection and transmission measurements. 

As an additional check on the theory, for example, to 
show that the free-carrier dispersion can completely 
account for the observed reflectivity, a theoretical re­
flection curve can be generated using the effective mass 
calculated from Eq. (9). When this is done, one finds 
that the reflectivity curve, reported by S-F for the 
^-type sample of germanium considered above, is re­
produced as exactly as it is possible to determine the 
values from their report. (The values calculated to 
achieve this fit are shown in Fig. 1.) Moreover, such a 
precise fit indicates that we are apparently justified in 
the substitution of (r) into Eqs. (2) and (3) and that in 
this case at least such a substitution produces negligi­
ble error. [This result should be compared with Fig. 
4a (Appendix A) for 0=3.6, rj= — 2, and s= — | . ] 

Before concluding this discussion, it is of interest to 
consider the effect of various simplifying assumptions 
upon Eq. (9). For example, the plasma frequency is 
oftentimes obtained approximately by assuming that 
n~\ [see Eq. (6)], that k is negligibly small compared 
with unity, and that 0, is very much greater than unity. 
Under such conditions Eq. (7) can be solved directly to 
give the result 

Wo = tf^/«0*€o(€oo-l). ( 1 0 ) 

This expression is sometimes even further simplified by 
neglecting unity with respect to ê  which yields 

mc îVVVWeoe* (11) 

Now, if the conductivity effective mass is calculated, 
for the ?z-type sample of germanium considered here, 
by means of Eqs. (10) and (11), the resulting values are 
wc*=0.123 and 0.115, respectively. These values differ 
significantly from the value wc*=0.15 obtained by 
Spitzer and Fan. This difference serves as justification 
for the derivation of the more exact Eq. (9). 

Finally, it should be noted that Eq. (9) can be very 
well approximated by a quadratic equation since the 
constant term is oftentimes negligibly small. 

3 6 , 0 - 1 ( l / 0 2 ) + 5 + 8 0 2 

m* 2 Qm* 
4e00(e00-l) (1+302) 

3e0O-2 (1+202) 
+ C2 = 0. (12) 

2 € o o (^- l ) 2 ( l+30 2 ) 

This equation can be solved directly, with the result 
that there are apparently two solutions. In actual fact, 
there is only one allowable solution. The root with the 
plus sign must be chosen, because it is the root which 
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FIG. 1. Reflectivity and refractive index as functions of wave­
length for w-type germanium having 3.9X1018 cm"3 as reported 
in Ref. 4. In addition, theoretical values for the reflectivity, having 
been calculated using an effective mass mc-0.145 mo, are shown. 

in the limit of Q?^>1 reduces to the known result ex­
pressed in Eq. (10). 

COMPARISON WITH OTHER TECHNIQUES 

Cyclotron resonance techniques for the determination 
of the components of the conductivity effective mass 
have yielded a very great insight into the band struc­
ture of germanium and silicon (Ref. 12 gives a good re­
view of this development). However, the condition for 
the observation of this resonance phenomenon is rcoc> 1, 
where coc is the natural cyclotron frequency of rotation 
of a moving electron in a magnetic field about an axis 
parallel to the field, and classically this frequency is 
given by o)c=eB/mc. Consequently, experiments in the 
microwave region, using reasonable magnetic field in­
tensities, require that r be 10"n sec or longer. This 
condition is only fulfilled for high-purity semiconductors 
at low temperatures. 

This limitation severely restricts the usefulness of 
cyclotron resonance for the determination of me. For 
example, some semiconductors have not as yet been pre­
pared in a sufficiently pure form to enable cyclotron 
resonance measurements to be made. In this group, for 
example, is the very interesting family of semiconductors 
PbS, PbSe, and PbTe. Furthermore, there is reason to 
believe that the value of the conductivity effective mass 
in some semiconductors may be temperature-dependent. 
Evidence of this possibility has been reported in con­
nection with investigations of both germanium13 and 
lead sulfide.14 However, because of the stringent condi-

12 T. H. Geballe, Semiconductors an American Chemical Society 
Monograph Series, edited by N. B. Hannay (Reinhold Publishing 
Corporation, New York, 1959), Chap. 8, pp. 321-6. 

13 G. MacFarlane, F. McLean, J. Quarrington, and V. Roberts, 
Phys. Rev. 108, 1377 (1957). 

1 4 1 . Smirnov, B. Moizhes, and E. Nensberg, Fiz. Tverd. Tela 2, 
1992 (1960) [English transl.: Soviet Phys.—Solid State 2, 1793 
(1961)]. 
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tion TCOC>1, cyclotron resonance measurements are 
generally restricted to liquid-helium temperatures and 
so they cannot be utilized for the determination of the 
temperature dependence of mc. 

More recently, techniques have been developed which 
have utilized measurements in the far infrared. As men­
tioned earlier (S-F) obtained values of mc from a com­
bination of reflection and transmission measurements,4 

and Lax and Wright (L-W) obtained their values from 
the reflectivity of polarized radiation for several values 
of magnetic field intensities5 (magnetoplasma effect). 
In both of their analyses (S-F and L-W), the simplifica­
tion of neglecting the contribution of the lattice to the 
total dispersion has been inferred. 

In connection with the S-F procedure, one notes that 
if the condition (cor)2^>l is fulfilled, the dispersion rela­
tion of Eq. (2) is independent of r. Under this con­
straint, the conditions placed upon the energy de­
pendence of r, as noted earlier, do not apply. That is, 
under the constraint that (cor)2^>l, the relaxation time 
may have an arbitrary energy dependence without 
having any effect on the resultant dispersion relation­
ship, which is 

-k2— eoo—Ne^niceoa)2. (13) 

In addition to the simplified dispersion relation of 
Eq. (13) and the reflectivity relationship expressed in 
Eq. (6), the S-F procedure utilizes the fact that the 
transmission through a sample of material of thickness 
x in the absence of interference fringes and for h2<<^n2 

is given by16 

T= (l-Rye-
a*/(l-R2e-2a*), (14) 

where a is the linear absorption coefficient which is re­
lated to the absorption index k by the relation 

a = 4irk/\. (15) 

15 Reference 6, pp. 13-14. 

The linear absorption coefficient a equals the reciprocal 
of the distance within which the incident radiation is 
attenuated by a factor (exp)-1. The procedure outlined 
by S-F for the determination of mc is readily deduced 
from Eqs. (6), (13)-(15). 

This method for obtaining the conductivity effective 
mass of free carriers is relatively simple compared with 
cyclotron resonance techniques. I t does require that 
(cor)2^>l. However, since the frequencies are of the order 
of 1013-1014 rad/sec, r may be of the order of 10~13 sec 
compared with 10~n sec for cyclotron resonance. Con­
sequently, measurements can be made on less pure 
materials and at higher temperatures. Furthermore, it 
may or may not require transmission measurements. 
Under certain conditions where k increases very rapidly 
with wavelength (see Fig. 2), it is possible to consider 
the reflection region where k2<£(n— l ) 2 and thus obtain 
mc directly from Eqs. (6) and (13). However, one must 
beware that going to wavelengths much smaller than 
Xo means that n2 —> e*, and small errors in the absolute 
reflectivity can cause very large errors in w* calculated 
from Eqs. (6) and (13). Consequently, in general, the 
S-F procedure requires transmission measurements 
which in turn require the preparation of very thin 
samples. For their transmission measurements, S-F 
used samples whose thickness was of the order of 10 fx. 
Such thicknesses represent a few thousand atomic layers 
and are very often difficult to achieve without producing 
extensive damage to the remaining material. For ex­
ample, it has been possible to achieve such thicknesses in 
lead telluride only with very careful grinding and polish­
ing techniques and then only very small surface areas 
(—600X50 pi) were obtained so that special optical 
techniques must be utilized.16 

The other procedure mentioned above, the measure­
ment of the magnetoplasma reflection as proposed by 
L-W,5 eliminates the necessity of making transmission 

.055 .057 .059 .061 .063 .065 .067 .069 .071 .073 .075 .077 .079 
PHOTON ENERGY (eV) 

FIG. 3. Magnetoplasma effect in ^-type InSb having 1.8X1018 

cm-3 as reported in Ref. 5. 

> W. W, Scanlon, Phys. Chem. Solids 8, 423 (1959). 
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measurements. This method utilizes the fact that, in the 
presence of properly polarized radiation, a magnetic 
field shifts the minimum in the reflectivity to both sides 
of the zero-field minimum. This results in the appearance 
of two minima. The displacement of these minima to 
either side of the zero-field minimum is directly propor­
tional to the cyclotron resonance frequency o)c=eB/mc. 
In their investigation, L-W have determined the shift 
as a function of magnetic field strength and have deter­
mined mc from the slope of this dependence. Their data 
for the magnetoplasma effect in ^-type indium anti-
monide are shown in Fig. 3. 

This procedure, even though it offers the advantage 
of eliminating transmission measurements, does con­
tain several inherent drawbacks. For example, magnetic 
field strengths of 25-kG or less would produce a shift in 
the minimum of approximately ± ^ \x for the germanium 
sample of Fig. 1. Consequently, for zero-field reflection 
minima which are shallow and which have a width of a 
couple of microns, as for example the reflectivity mini­
mum observed by S-F for germanium at room tempera­
ture in Fig. 1, the actual shift of the minimum is very 
difficult to measure. In fact, in their original article Lax 
and Wright found that the positions of the shifted 
minima were sufficiently indistinct so that it was ex­
pedient to determine the shift from that of the reflec­
tion edge on the long-wavelength side of the reflection 
minimum at an isoreflection point. This shift is that 
indicated by the arrows in Fig. 3. However, this latter 
method for obtaining the shift of the reflection minimum 
is also subject to certain disadvantages. First of all, it 
is not clear that the edge should shift the same amount 
as the minimum since the latter shift was determined 
assuming that losses are negligible. This is certainly not 
the case in the region of the reflection edge on the long-
wavelength side of the reflection minimum because in 
this region we have the condition k>n. Furthermore, 
because k increases very rapidly in this region of the 
reflectivity, the depth of penetration of the incident 
radiation becomes increasingly shallow. For example, 
from Eq. (15) we see that the penetration depth (1/a) 
for A = 30 n and k~2 is only of the order of 1 /x. Conse­
quently, the surface preparation becomes increasingly 
important in this region of the reflectivity curve. Sur­
face damage can therefore distort the reflectivity in 
this wavelength range. Such surface effects make it even 
more difficult to determine the relationship of the ob­
served shift in the reflection edge to the cyclotron reso­
nance frequency. 

CONCLUSIONS 

The relationship between mc and wo presented in Eq. 
(9) offers some unique advantages in the determina­
tion of mc. I t has rather widespread applicability since 
it is valid for totally degenerate statistics and for almost 
all degrees of degeneracy when \s\ < § , where s is the 
power of the energy dependence of r. Equation (9) is 
not limited by any assumption that cor>l . I t is much 

more applicable than the simplified relation of Eq. (11). 
I t eliminates the necessity of determining the transmis­
sion through very thin samples of material on the one 
hand and the necessity of applying large magnetic 
fields perpendicular to the direction of propagation of 
polarized infrared radiation on the other. What is re­
quired is the measurement of the infrared reflectivity in 
order to determine the frequency of minimum reflection. 
I t is not even necessary to obtain absolute reflectivity 
data. Relative values can serve equally well. That is, a 
percentage of the incident and/or of the reflected radia­
tion can be lost through experimental error. Although 
this will result in a decrease in the resolution of the 
minimum, if the minimum is nevertheless discernible, it 
is still possible to determine mc from Eq. (9). More­
over, this procedure is not overly sensitive to the effects 
of surface damage on the long-wavelength side of the 
reflectivity minimum. I t has been noted above that the 
surface preparation becomes increasingly important in 
this region because of the decreasing depth of penetra 
tion into the sample. A damaged sample surface has the 
tendency of dispersing the radiation thereby reducing 
the reflectivity in this long wavelength region and of pre­
senting a (T) which is different from that of the bulk 
material. The reflectivity in the region of the minimum 
is also subject to distortion from this mechanism only 
less so than in the region of the absorption edge because 
of the increased depth of penetration of the incident 
radiation. 

Consequently, mc can be obtained using Eq. (9) over 
the large temperature range in which the reflectivity 
minimum is measurable. The free-carrier concentration 
of the semiconductor material of interest is limited only 
by the requirement of single-carrier conduction, by the 
requirement that the lattice contribution to the dis­
persion be relatively unimportant, and by the require­
ment that the reflectivity apparatus be capable of 
analyzing the reflection near the free-carrier dispersion 
minimum. However, these limitations on the applica­
bility of this procedure are also common to the other 
procedures which utilize infrared radiation. 
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APPENDIX A 

I t is convenient to substitute terms expressed as func­
tions of (T) into Eqs. (2) and (3). Such a substitution is 
only approximately equivalent to the exact terms. The 
nature of the approximation involved can be appreci­
ated by examining the following ratios: 

<rV(l+coV)> <r/(l+a>V)> 
and (16, 17) 

( r ) V ( l + ^ ( r ) 2 ) <r>/(l+a>*<r>2) 
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FIG. 4. Asymptotic limits of the ratios (16,17) plotted as func­
tions of cor for various values of the scattering parameter s and 
for three degrees of degeneracy rj< —4, =0 , >4 . 

under the conditions of cor̂ >>l and a>r<$Cl. Under these 
conditions the above ratios approach the following 
limiting values: 

for c o r » l : 1 and (T^XT) 

for c o r « l : <r2)(r)~2 and 1. 

Under these limiting conditions, it is apparent that for 
complete degeneracy these ratios are unity. In the limit 
of nondegeneracy these limiting values become 

for c o r » l : 1 and r ( 5 / 2 - * ) r ( 5 / 2 + s ) [ r ( 5 / 2 ) ] ~ 2 

for c o r « l : r ( 5 / 2 + 2 ^ ) r ( 5 / 2 ) [ r ( 5 / 2 + j ) ] - 2 and 1 

The asymptotic limits for various scattering mecha­
nisms are shown in Fig. 4 for reduced Fermi potentials 
of 7j<— 4, =0 , and > 4 . 

Appendix B 

The condition dR/d£l=0 yields the equation 

(n2-l--k2)n'+2nkk'=0, (18) 

where the prime signifies d/d£l. Solving for k and kf 

from Eq. (8) and substituting into (18) yields 

( » 4 - » 2 - 3 / 3 V + 2 / 5 n / 3 / = 0 , (19) 

where /3=£/[212( l+0 2 ) ] . Combining Eqs. (7) and (8) 
yields 

n*=en2+p2, (20) 

where e— e^—[i?/(l+122)l and upon substituting (20) 
into (19), we obtain 

[ ( e - l > 2 - 2 / 5 2 > / + 2 / ^ ' = = 0 . (21) 

By solving (20) for n2 (choosing the positive root to 
keep n real), by differentiating this result with respect 
to ft, and by substituting (n2)'/ (2n) for n' in Eq. (21), 
we obtain 

[ ( € - l K - 2 / 3
2 ] [ - 2 # 2 1 2 3 + / ? ( l + 3 0 2 ) ] 

+ 2 ^ ( l + 3 O 2 ) ( 2 / * 2 - e ) = 0. (22) 

Equation (22) can be rewritten in the form 

n4=:G(Q)n2+H(tt)p2, (23) 

where G(ti) and H(Q) are complicated functions of 0. 
Equating (23) and (20) yields 

n2=(32(H-l)/(e-G). (24) 

Dividing Eq. (20) by «2 and substituting for n2 from 
Eq. (24) yields the relationship 

p=(<-G)(m-G)/(H-iy. (25) 

After much simplification (25) reduces to Eq. (9) of the 
text. 


